翻訳と辞書 |
Normal curvature : ウィキペディア英語版 | Darboux frame In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux. ==Darboux frame of an embedded curve== Let ''S'' be an oriented surface in three-dimensional Euclidean space E3. The construction of Darboux frames on ''S'' first considers frames moving along a curve in ''S'', and then specializes when the curves move in the direction of the principal curvatures.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Darboux frame」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|